tìm giá trị lớn nhất nhỏ nhất của hàm số lượng giác

Bài ghi chép Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác với cách thức giải cụ thể canh ty học viên ôn luyện, biết phương pháp thực hiện bài bác luyện Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác.

Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác rất rất hay

A. Phương pháp giải

Quảng cáo

Bạn đang xem: tìm giá trị lớn nhất nhỏ nhất của hàm số lượng giác

Để tìm kiếm ra độ quý hiếm rộng lớn nhất;giá trị nhỏ nhất của hàm số tớ cần thiết chú ý:

+ Với từng x tớ luôn luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với từng x tớ có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho nhị cỗ số (a1; a2) và (b1;b2) Khi ê tớ có:

(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )

Dấu “=” xảy đi ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f(x) có mức giá trị lớn số 1 là M và độ quý hiếm nhỏ nhất là m. Khi đó; luyện độ quý hiếm của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c với nghiệm Khi và chỉ Khi a2 + b2 ≥ c2

B. Ví dụ minh họa

Ví dụ 1. Tìm độ quý hiếm lớn số 1 M và độ quý hiếm nhỏ nhất m của hàm số y= 1- 2|cos3x|.

A. M=3 ; m= - 1.

B. M= 1 ; m= -1.

C. M=2 ;m= -2.

D. M=0 ; m= -2.

Lời giải:.

Chọn B.

Với từng x tớ với : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1

⇒ 0 ≥ -2|cos3x| ≥ -2

Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác rất rất hay

Ví dụ 2: Hàm số y= 1+ 2cos2x đạt độ quý hiếm nhỏ nhất bên trên x= x0. Mệnh đề nào là sau đó là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Lời giải:.

Chọn B.

Ta với - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3

Do ê độ quý hiếm nhỏ nhất của hàm số vị 1 .

Dấu ‘=’ xẩy ra Khi cosx=0 ⇒ x=π/2+kπ, kϵZ .

Quảng cáo

Ví dụ 3: Tìm độ quý hiếm lớn số 1 M và độ quý hiếm nhỏ nhất m của hàm số y= sin2x+ 2cos2x.

A.M= 3 ;m= 0

B. M=2 ; m=0.

C. M=2 ; m= 1.

D.M= 3 ; m= 1.

Lời giải:.

Chọn C.

Ta có: hắn = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy đi ra độ quý hiếm lớn số 1 của hàm số là M= 2 và độ quý hiếm nhỏ nhất của hàm số là m= 1

Ví dụ 4: Tìm độ quý hiếm lớn số 1 M và độ quý hiếm nhỏ nhất m của hàm số y= 4sinx - 3

A.M= 1; m= - 7

B. M= 7; m= - 1

C. M= 3; m= - 4

D. M=4; m= -3

Lời giải

Chọn A

Ta với : - 1 ≤ sinx ≤ 1 nên - 4 ≤ 4sinx ≤ 4

Suy đi ra : - 7 ≤ 4sinx-3 ≤ 1

Do ê : M= 1 và m= - 7

Ví dụ 5: Tìm luyện độ quý hiếm T của hàm số y= -2cos2x + 10 .

A. [5; 9]

B.[6;10]

C. [ 8;12]

D. [10; 14]

Lời giải:

Chọn C

Với từng x tớ với : - 1 ≤ cos⁡2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

⇒ 8 ≤ -2cos2x+10 ≤ 12

Do ê luyện độ quý hiếm của hàm số vẫn cho rằng : T= [ 8 ;12]

Quảng cáo

Ví dụ 6: Tính chừng nhiều năm độ quý hiếm của hàm số y= 10- 2cos2x

A. 10

B. 8

C.6

D. 4

Lời giai

Với từng x tớ có: - 1 ≤ cos2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

Suy ra: 8 ≤ 10-2cos2x ≤ 12

Do đó; luyện độ quý hiếm của hàm số vẫn mang đến là: [8; 12] và chừng nhiều năm đoạn độ quý hiếm của hàm số là : 12 – 8= 4

Chọn D.

Ví dụ 7: Tính tổng mức nhỏ nhất m và độ quý hiếm lớn số 1 M của hàm số sau: y= √3 sin⁡( 2016x+2019)

A. - 4032

B. √3

C. -√3

D. 0

Lời giải:

Chọn D

Với từng x tớ với :- 1 ≤ sin⁡(2016x+2019) ≤ 1

⇒ -√3 ≤ √3sin⁡(2016x+2019) ≤ √3

Do ê độ quý hiếm nhỏ nhất của hàm số là -√3 và giá chỉ trị lớn số 1 của hàm số là √3

⇒ Tổng độ quý hiếm lớn số 1 và nhỏ nhất của hàm số là - √3+ √3=0

Ví dụ 8: Tìm độ quý hiếm nhỏ nhất m của hàm số y= 1/(1+sinx)

A. m= 1/2

B. m= 1/√2

C. m= 1

D. m= √2

Lời giải:

Chọn A

Điều khiếu nại xác lập : sinx ≠ -1 hoặc x ≠ (- π)/2+k2π

+ Với từng x thỏa mãn nhu cầu ĐK tớ với : - 1<sinx ≤ 1 nên sinx + 1 > 0

+ Nếu hình mẫu 1+ sinx > 0 thì hàm số đạt độ quý hiếm nhỏ nhất lúc và chỉ Khi 1+ sinx đạt độ quý hiếm rộng lớn nhất

Hay 1+ sinx=2 < ⇒ sinx= 1( thỏa mãn nhu cầu điều kiện) .

Khi ê ymin = một nửa

Vậy hàm số đạt độ quý hiếm nhỏ nhất là một nửa Khi sinx= 1

Ví dụ 9: Tìm độ quý hiếm lớn số 1 M, độ quý hiếm nhỏ nhất m của hàm số: y= 2018sin( 9x+π/100)+2000

A. m=18 ; M=4018

B. m = -18; M= 18

C. m=-18; M= 4018

D. Đáp án khác

Lời giải:

Chọn C

Hàm số xác lập bên trên R.

Với từng x tớ có: - 1 ≤ sin( 9x+π/100) ≤ 1 nên - 2018 ≤ 2018sin( 9x+π/100) ≤ 2018

⇒ -18 ≤ 2018sin( 9x+π/100)+2000 ≤ 4018

⇒ độ quý hiếm nhỏ nhất của hàm số là -18 Khi sin( 9x+π/100)=-1

Giá trị lớn số 1 của hàm số là 4018 Khi sin( 9x+π/100)=1

Quảng cáo

Ví dụ 10: Tìm độ quý hiếm lớn số 1 M và độ quý hiếm nhỏ nhất m của hàm số y= ∜sinx- √cosx.

A. m= -1; M=1.

B. m = 0; M=1

C. m= -1;M=0

D. m= -1 và M ko tồn bên trên.

Lời giải:

Chọn A

Với từng x thỏa mãn nhu cầu ĐK : sinx > 0 và cosx > 0 .Ta có:

Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác rất rất hay

Vậy hàm số đạt độ quý hiếm nhỏ nhất là m= – 1 khi: (sinx=0 và cosx=1 ⇒ x= k2π.

Hàm số đạt độ quý hiếm lớn số 1 là M=1 Khi (sinx=1 và cosx=0 ⇒ x= π/2+k2π.

Ví dụ 11. Gọi M và m theo lần lượt là độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số : y= cos2 x – 6cosx + 11. Tính M.m

A.30

B.36

C.27

D.24

Lời giải:

Ta có: cos2 x – 6cosx +11 = ( cos2x – 6cosx + 9) +2 = (cosx -3)2 + 2

Do - 1 ≤ cosx ≤ 1 ⇒ - 4 ≤ cosx-3 ≤ -2

⇒ 0 ≤ (cosx-3)^2 ≤ 16

⇒ 2 ≤ (cosx-3)^2+2 ≤ 18

Suy ra:M= 18 và m= 2 nên M. m= 36.

Chọn B.

Ví dụ 12. Gọi M và theo lần lượt là độ quý hiếm rộng lớn nhất; độ quý hiếm nhỏ nhất của hàm số

y=(cosx+2sinx+3)/(2cosx-sinx+4). Tính S= M+11m

A.4

B.5

C. 6

D. 8

Lời giải:.

Gọi y0 là một trong độ quý hiếm của hàm số.

Khi ê phương trình y0=(cosx+2sinx+3)/(2cosx-sinx+4) với nghiệm.

⇒ y0.( 2cosx- sinx + 4) = cosx +2sinx + 3 với nghiệm

⇒ 2y0.cosx – sinx.y0 + 4y0- cosx – 2sinx – 3=0 với nghiệm

⇒ ( 2y0 -1)cosx – ( y0+2).sinx =3- 4y0 (*)

Phương trình (*) với nghiệm Khi và chỉ Khi :

(2y0-1)2 + ( y0 + 2)2 ≥ (3-4y0)2

⇒ 4y02 – 4y0 +1 +y02 +4y0 + 4 ≥ 9-24y0+16y02

⇒ 11y02 – 24y0 + 4 ≤ 0  2/11 ≤ y0 ≤ 2

Suy ra: M=2 và m=2/11 nên S= M+ 11m= 4

Chọn A.

Ví dụ 13. Cho hàm số y= √(1+2sin2 x)+ √(1+2〖cos2 x)-1. Gọi m và M theo lần lượt là độ quý hiếm nhỏ nhất và độ quý hiếm lớn số 1 của hàm số. Khi đó; độ quý hiếm M+ m ngay gần với độ quý hiếm nào là nhất?

A. 3,23

B. 3,56

C. 2,78

D.2,13

Lời giải:

+ Xét t= √(1+2sin2 x)+ √(1+2cos2 x)

⇒ t2 = 1+ 2sin2 x+ 1+ 2cos2 x+ 2. √((1+2sin2 x).( 1+2cos2 x) )

=4+2√(3+ sin2 2x)

Mà sin22x ≥ 0 nên t2 ≥ 4+ 2√3

Mà t > 0 nên t ≥ √(4+2√3) =1+ √3

Suy ra: y= t-1 ≥ √3

Dấu “=” xẩy ra Khi sin2x=0 .

+ Lại có:

√(1+2sin2 x)+ √(1+2cos2 x) ≤ √((1^2+ 1^2 ).( 1+2sin2x+ 1+2cos2 x) )= 2√2

⇒ y= √(1+2sin2 x)+ √(1+2cos2 x)-1 ≤ 2√2-1

Dấu “=” xẩy ra Khi sin2 x= cos2x

Vậy {(m= √3 và M=2√2-1) ⇒ M+ m≈3,56

Chọn B.

C. Bài luyện vận dụng

Câu 1:Gọi M; m theo lần lượt là độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số y=8sin2x+3cos2x . Tính P= M- 2m.

A. P= - 1

B. P= 1

C. P= 2

D. P=0

Lời giải:

Chọn A.

Ta có: hắn = 8sin2 x + 3cos2x = 8sin2x + 3( 1 – 2sin2x ) = 2sin2x+ 3.

Mà -1 ≤ sinx ≤ 1 ⇒ 0 ≤ sinx ≤ 1 ⇒ 3 ≤ 2sinx+3 ≤ 5 ⇒ 3 ≤ hắn ≤ 5.

Suy ra: M= 5 và m= 3

Do đó: Phường = 5- 2.3= - 1

Câu 2:Tìm độ quý hiếm lớn số 1 M của hàm số y= 4sin2x + 3.cos2x .

A. M= 3

B. M= 1

C. M= 5

D. M= 4

Lời giải:

Chọn C.

Ta có: hắn = 4sin2x+ 3cos2x = 5.( 4/5.sin2x+ 3/5 cos2x).

Đặt cosα= 4/5 và sinα= 3/5

Khi đó: y= 5( cosα.sin2x+sinα.cos2x)=5.sin⁡( α+2x)

⇒ - 5 ≤ hắn ≤ 5

Suy đi ra M= 5.

Câu 3:Gọi M ; m theo lần lượt là độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số y= sin2x – 4sinx+ 5. Tính M+ m.

A.3

B.8

C.10

D.12

Lời giải:

Chọn D.

Xem thêm: kiên nhẫn là gì

Ta có: y= sin2x – 4sinx+ 5= ( sinx- 2)2 + 1.

Do: -1 ≤ sinx ≤ 1 nên-3 ≤ sinx-2 ≤ -1

⇒ 1 ≤ ( sinx-2)2 ≤ 9 ⇒ 2 ≤ ( sinx-2)2+1 ≤ 10 .

Suy ra: M=10 và m = 2

Do đó; M+ m = 12

Câu 4:Cho hàm số y= cos2x- cosx với luyện độ quý hiếm là T. Hỏi với toàn bộ từng nào độ quý hiếm vẹn toàn nằm trong T.

A. 1

B. 2

C. 3

D. 4

Lời giải:

Chọn C.

Ta có: cos2x- cosx = (cosx- 1/2)2- 1/4 .

Do - 1 ≤ cosx ≤ 1 nên (- 3)/2 ≤ cosx- một nửa ≤ 1/2

⇒ 0 ≤ ( cosx- 1/2)2 ≤ 9/4 ⇒ (- 1)/4 ≤ ( cosx- 1/2)2- 1/4 ≤ 2.

Do ê (- 1)/4 ≤ hắn ≤ 2. Vậy luyện độ quý hiếm của hàm số là [(- 1)/4;2]

⇒ Trong đoạn [ -1/4;2] với tía độ quý hiếm vẹn toàn thỏa mãn nhu cầu là 0; 1 và 2.

Do ê với 3 độ quý hiếm thỏa mãn nhu cầu.

Câu 5:Hàm số y= cos2x+ 2sinx+ 2 đạt độ quý hiếm nhỏ nhất bên trên x0. Mệnh đề nào là sau đó là chính.

A. x= (-π)/2+k2π.

B. x= π/2+k2π.

C. x= k π

D. x= k2π

Lời giải:

Chọn B.

Ta có: cos2x+ 2sinx+ 2 = 1- sin2x+ 2sinx + 2= - sin2x + 2sinx+ 3 = - (sinx-1)2 + 4

Mà - 1 ≤ sinx ≤ 1 nên-2 ≤ sinx-1 ≤ 0

Suy ra: 0 ≤ ( sinx-1)2 ≤ 4 ⇒ -4 ≤ - (sinx-1)2 ≤ 0

⇒ 0 ≤ 4 - (sinx-1)2 ≤ 4

Suy đi ra độ quý hiếm nhỏ nhất của hàm số vị 0.

Dấu “=” xẩy ra Khi và chỉ Khi sinx= 1 ⇒ x= π/2+k2π.

Câu 6:Tìm độ quý hiếm lớn số 1 M và nhỏ nhất m của hàm số y= sin4x -2 cos2x+ 1.

A.M= 2; m= - 2

B.M=1; m=0

C.M=4;m= - 1

D M=2;m= - 1

Lời giải:

Chọn D.

Ta có: sin4x- 2cos2x + 1= sin4x – 2( 1- sin2x) + 1

= sin4x + 2sin2x - 1 = ( sin2 x +1)22 - 2

Mà: 0 ≤ sin2 x ≤ 1 nên 1 ≤ sin2 x+1 ≤ 2

Suy ra: 1 ≤ ( sin2 x+1)2 ≤ 4 ⇒ -1 ≤ ( sin2 x+1)2-2 ≤ 2 .

Nên M= 2; m= - 1

Câu 7:Tìm độ quý hiếm nhỏ nhất của hàm số y= 4sin4x – cos4x.

A. - 3

B. - 1

C. 3

D. 5

Lời giải:

Chọn B.

Ta có: y= 4sin4x – cos4x= 4.((1-cos2x)/2)2-(2cos2 2x-1)

= 1- 2cos2x+ cos22x – 2cos2x + 1

= - cos42x - 2cos2x + 2 = - (cos2x+ 1)2 + 3

Mà -1 ≤ cos2x ≤ 1 ⇒ 0 ≤ cos2x+1 ≤ 2 ⇒ 0 ≤ (cos2x+1)2 ≤ 4 ⇒ -1 ≤ -(cos2x+1)2+3 ≤ 3

Suy đi ra m= - 1.

Câu 8:Gọi M và m theo lần lượt là độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số y= 2( sinx - cosx). Tính P= M+ 2m.

A. 2

B. - 2√2

C. - √2

D. 4√2

Lời giải:

Chọn B

Ta với : 2( sinx- cosx)=2√2 sin⁡( x- π/4)

Với từng x thì : - 1 ≤ sin⁡( x- π/4) ≤ 1

⇒ - 2√2 ≤ 2√2.sin⁡( x- π/4) ≤ 2√2

Vậy độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số vẫn cho rằng M= 2√2 và m= -2√2

⇒ P= M+ 2m= - 2√2

Câu 9:Giá trị lớn số 1 và độ quý hiếm nhỏ nhất của hàm số y= √(1- cos2 x)+1là:

A. 2 và 1

B. 0 và 3

C. 1 và 3

D.1 và 1+ √2

Lời giải:

Ta với : √(1- cos2 x)= √(sin2 x)= |sinx|

Do đó; hàm số y= √(1- cos2 x)+1=|sinx|+1

Với từng x tớ có: - 1 ≤ sinx ≤ 1 nên 0 ≤ |sinx| ≤ 1

⇒ 1 ≤ |sinx|+1 ≤ 2

⇒ độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của hàm số vẫn cho rằng 2 và 1.

Chọn A

Câu 10:Giá trị nhỏ nhất của hàm số y= 4sin2 x+ 6cos2x+ 2 là

A. 4

B. 6

C. 8

D. 10

Lời giải:

Ta có: 4sin2x + 6cos2 x+ 1= 2( 1- cos2x) + 3( 1+cos2x) + 2 = cos2x+ 7

Với từng x tớ luôn luôn có: - 1 ≤ cos2x ≤ 1 nên 6 ≤ cos2x+7 ≤ 8

Suy ra: độ quý hiếm nhỏ nhất của hàm số là 6

Chọn B.

Câu 11:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số sau

A.max y=4,min y=3/4

B.max y=3,min y=2

C.max y=4,min y=2

D.max y=3,min y=3/4

Lời giải:

Đặt t=sin2x, 0 ≤ t ≤ 1 ⇒ cos2x=1-2t

⇒ y= 2t+(1-2t)2=42-2t+1=(2t-1/2)2+3/4

Do 0 ≤ t ≤ 1 ⇒ -1/2 ≤ 2t-1/2 ≤ 3/2 ⇒ 0 ≤ (2t-1/2)2 ≤ 9/4 ⇒ 3/4 ≤ hắn ≤ 3 .

Vậy max y=3 đạt được Khi x=π/2+kπ .

min y=3/4 đạt được Khi sin2x=1/4 .

Chọn D.

Câu 12:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số sau hắn = 3sinx + 4cosx + 1

A. max y=6,min y=-2

B. max y=4,min y=-44

C. max y=6,min y=-4

D.max y=6,min y=-1

Lời giải:

Áp dụng bất đẳng thức bunhia- xcopski: (ac+bd)2 ≤ (c2+d2)(a2+b2) .

Đẳng thức xẩy ra Khi a/c=b/d .

Ta có: (3sinx+4cosx)2 ≤ (32+42)(sin2+cos2)=25

⇒ 5 ≤ 3sinx+4cosx ≤ 5 ⇒ -4 ≤ hắn ≤ 6

Vậy max y=6 , đạt được Khi tanx=3/4 .

min y=-4 , đạt được Khi tanx=-3/4.

Chọn C.

Câu 13:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số sau y=2sin2x+3sin2x-4cos2x

A. min y= -3√2 -1, max y=3√2 +1

B. min y= -3√2 -1, max y=3√2 -1

C. min y= -3√2 , max y=3√2 -1

D. min y= -3√2 -2, max y=3√2 -1

Lời giải:

Ta có: y= 2sin2 x + 3sin2x - 4cos2x

= 1 – cos2x + 3sin2x - 2( 1+ cos2x)

=3sin2x-3cos2x-1=3√2sin(2x-π/4)-1

Mà -1 ≤ sin(2x- π/4) ≤ 1 ⇒ - 3√2 ≤ 3√2sin⁡(2x- π/4) ≤ 3√2

⇒ - 3√2-1 ≤ 3√2sin⁡( 2x- π/4)-1 ≤ 3√2-1

Suy đi ra min y= -3√2 -1, max y=3√2 -1 .

Chọn B.

Câu 14:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số y=sin2x+3sin2x+3cos2x

A. min y= 2+√10 , max y=2-√10

B. min y= 2+√5, max y=2+√5

C. min y= 2+√2, max y=2-√2

D. min y= 2+√7, max y=2-√7

Lời giải:

Ta có:Cách lần Giá trị lớn số 1, nhỏ nhất của hàm con số giác rất rất hay

Áp dụng bất đẳng thức bunhia- xcopki tớ với :

- √(32+ 12 ) ≤ 3sin2x+cos2x ≤ √(32+ 12 )

Suy đi ra : -√10 ≤ 3sin2x+cos2x ≤ √10

⇒ 2-√10 ≤ hắn ≤ 2+√10

Từ ê tớ với được: maxy=2+√10;miny=2-√10.

Chọn A.

Câu 15:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số sau y=sinx+ √(2-sin2)

A.min y= 0, max y=3

B.min y= 0, max y=4

C.min y= 0, max y=6

D.min y= 0, max y=2

Lời giải:

Ta với 0 ≤ hắn ∀x và y2=2+2sin√(2-sin2)

Mà 2|sin√(2-sin2)| ≤ sin2+2-sin2=2

Suy đi ra 0 ≤ y2 ≤ 4 ⇒ 0 ≤ hắn ≤ 4

min y=0 đạt được Khi x=-π/2+k2π

max y=2 đạt được Khi x=π/2+k2π

Chọn D.

Câu 16:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số sau y=(sin2x+2cos2x+3)/(2sin2x-cos2x+4)

A. min y= -2/11, max y=2

B. min y= 2/11, max y=3

C. min y= 2/11, max y=4

D. min y= 2/11, max y=2

Lời giải:

+ gí dụng bất đẳng thức bunhia-xcopski tớ có:

(2sin2x – cos2x)2 ≤ (22+(-1)2). ( sin22x + cos22x) = 5

⇒ -√5 ≤ 2sin2x-cos2x ≤ √5

⇒ 4-√5 ≤ 4+ 2sin2x-cos2x ≤ 4+√5

⇒ 4+ 2sin2x- cos2x > 0 với từng x.

+ Ta có:

y=(sin2x+2cos2x+3)/(2sin2x-cos2x+4)

⇒ hắn. 2sin2x – hắn.cos2x + 4y = sin2x +2cos2x + 3

⇔ (2y-1)sin2x-(y+2)cos2x=3-4y (*)

Phương trình (*) với nghiệm Khi và chỉ khi:

⇒ (2y-1)2+(y+2)2 ≥ (3-4y)2

⇔ 11y2-24y+4 ≤ 0 ⇔ 2/11 ≤ hắn ≤ 2

Suy ra: min y= 2/11, max y=2 .

Chọn D.

Câu 17:Tìm luyện độ quý hiếm lớn số 1, độ quý hiếm nhỏ nhất của hàm số y=(2sin23x+4sin3xcos3x+1)/(sin6x+4cos6x+10)

A. min y= (11-9√7)/83, max y=(11+9√7)/83

B. min y= (22-9√7)/11, max y=(22+9√7)/11

C. min y= (33-9√7)/83, max y=(33+9√7)/83

D. min y= (22-9√7)/83, max y=(22+9√7)/83

Lời giải:

+Áp dụng bất đẳng thức bunhia- xcopski tớ có:

( sin6x+4cos6x)2 ≤ (12+42). ( sin26x+ cos26x)= 17

⇒ -√17 ≤ sin6x+4cos6x ≤ √17

⇒ sin6x+4cos6x+10 ≥ 10-√17 > 0 ∀x nằm trong R

Do đó; hàm số xác lập với từng x.

+ tớ có: y=(2sin6x-cos6x+2)/(sin6x+4cos6x+10)

⇒ (y-2)sin6x+(4y+1)cos6x=2-10y

Phương trình bên trên với nghiệm Khi và chỉ khi:

⇒ (y-2)2+(4y+1)2 ≥ (2-10y)2 ⇔ 83y2-44y-1 ≤ 0

⇒ (22-9√7)/83 ≤ hắn ≤ (22+9√7)/83.

Suy ra: min y= (22-9√7)/83, max y=(22+9√7)/83

Chọn D.

Săn SALE shopee mon 12:

  • Đồ sử dụng học hành giá cả tương đối mềm
  • Sữa chăm sóc thể Vaseline chỉ rộng lớn 40k/chai
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài bác giảng powerpoint, đề ganh đua dành riêng cho nhà giáo và gia sư dành riêng cho cha mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài tương hỗ ĐK : 084 283 45 85

Đã với tiện ích VietJack bên trên điện thoại cảm ứng thông minh, giải bài bác luyện SGK, SBT Soạn văn, Văn hình mẫu, Thi online, Bài giảng....miễn phí. Tải ngay lập tức phần mềm bên trên Android và iOS.

Xem thêm: local là gì

Theo dõi Cửa Hàng chúng tôi free bên trên social facebook và youtube:

Nếu thấy hoặc, hãy khuyến khích và share nhé! Các comment ko phù phù hợp với nội quy comment trang web sẽ ảnh hưởng cấm comment vĩnh viễn.


Giải bài bác luyện lớp 11 sách mới nhất những môn học